Crystal Form Transition during Heating of Solvent-induced Crystalline Syndiotactic Polystyrene

Cheng Shen ZHU¹, Hong Jing DOU¹, Su Qin HE¹*, Zhi Shen MO²

¹Material Engineering Department, Zhengzhou University, Zhengzhou 450052 ²Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022

Abstract: The phase transition of two kinds of solvent-induced crystalline syndiotactic polystyrene (sPS), γ -sPS and δ_{e} -sPS, has been studied *via* WAXD and DSC. γ -sPS transform to α -sPS at 195-225°C before melt during heating, whereas δ_{e} -sPS transform to first γ -sPS and then α -sPS at 100-200°C and 200-215°C, respectively. The transition of δ_{e} - γ and γ - α occurs far below melting point of sPS indicates they are all solid-solid transition.

Keywords: Crystal form transition, γ -sPS, δ e-sPS, α -sPS.

Syndiotactic polystyrene (sPS), as one kind of potential engineering plastics, has enjoyed intense academic and industrial interest recently¹. There are four different crystalline forms sPS could be formed altogether², among them γ and δ forms belong to solvent-induced crystal and both have chains in the S(2/1) helical conformation (δ form indicate either different clathrate structure which include molecules of solvent or emptied clathrate form- δ_e), whereas α and β forms which have chains in the trans planar conformation can be obtained under different thermal condition. The investigation on crystal form transition of solvent-induced crystalline sPS (γ and δ_e forms) is important to understand polymorphic behavior of sPS³⁻⁵.

The phase transition during heating at 10°C/min of γ -sPS and δ_{e} -sPS are studied using WAXD and DSC (the sample weight of DSC are 8.690 mg and 8.203 mg). δ_{e} -sPS was obtained by swelling of amorphous sample in chloroform and successive removal of chloroform. γ -sPS was obtained by annealing δ -sPS at 180°C.

Successive WAXD diagrams of γ -sPS and δ_{e} -sPS during heating process at 10 °C/min are shown in **Figure 1**. There is no crystal form transition for γ -sPS while T<195°C as shown in **Figure 1a**. However, the reduction of characteristic peak (2 θ =15.8°) of γ -sPS at 195°C shows that $\gamma - \alpha$ transition begins at this temperature. With the increase of temperature $\gamma - \alpha$ transition continues and is complete at 210°C. There is only the perfection of α form crystal during continual heating because the diffraction pattern of 215°C is almost the same as that of 210°C. As shown in **Figure 1b**, the diffraction diagrams of δ_{e} -sPS change little as T<100°C. The gradual transformation from the δ_{e} to the γ form accomplishes in the range 100-200°C, $\gamma - \alpha$ transition follows and completes at 215°C while heating the δ_{e} -form sample

Cheng Shen ZHU et al.

continually.

Figure 1 Successive WAXD diagrams during heating of solvent-induced crystalline sPS a γ -sPS b δ_{e} -sPS

Figure 2 DSC thermograms of solvent-induced crystalline sPS at 10°C/min

DSC curves are recorded when γ and δ_e forms sPS is heated from room temperature to the molten state at the constant rate of 10°C/min, as seen in **Figure 2**. The scan of the γ form (**Figure 2a**) presents a larger endothermic peak centered at 271°C and a smaller exothermal peak centered at 208°C. The endothermic and exothermal peak are associated with the melt down and the $\gamma - \alpha$ transition, respectively. The scan of the δ_e form (**Figure 2b**) presents besides the usual melting peak a very broad endothermic peak at 100-200°C and a smaller exothermal peak in the range of 200-215°C, which corresponding to δ_e - γ and $\gamma - \alpha$ transition, respectively.

Acknowledgment

This investigation was supported by the open laboratory funds of Chinese Academy of Sciences.

References

- 1. N. Ishihara, Macromol. Symp., 1995, 89, 553.
- 2. G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, P. Corradini, *Macromolecules*, **1990**, *23*, 1539.
- 3. V. Vittotia, F. De Cansia, P. Iannelli, A. Immirzi, *Makromol. Chem. Rapid Commun.*, **1988**, 9, 765.
- 4. C. De Rosa, G. Guerra, V.Petraccone, B. Pirozzi, Macromolecules, 1997, 30, 4147.
- 5. G. Guerra, C.Manfredi, P.Musto, S.Tavone, Macromolecules, 1998, 31, 1329.

Received 30 March 2000